Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU

LABORATORY PLAN

Academic Year 2019-20

Program:	B E – Basic Science
Semester:	1
Course Code:	18CPL17
Course Title:	C Programming Laboratory
Credit / L-T-P:	1/ 0-0-2
Total Contact Hours:	40
Course Plan Author:	MANJULA K

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-560090, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477, Web: <u>www.skit.org.in</u>

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	
1. Laboratory Overview	
2. Laboratory Content	
18CPL17 /H	Copyright ©2017. cAAS. All rights reserved.

4. Laboratory Prerequisites:
5. Content for Placement, Profession, HE and GATE
B. Laboratory Instructions
1. General Instructions/
2. Laboratory Specific Instructions8
C. OBE PARAMETERS
1. Laboratory Outcomes
2. Laboratory Applications
3. Mapping And Justification9
4. Articulation Matrix
5. Curricular Gap and Experiments
6. Experiments Beyond Syllabus
D. COURSE ASSESSMENT
1. Laboratory Coverage
2. Continuous Internal Assessment (CIA)
E. EXPERIMENTS
Experiment 01: Familiarization with programming environment by taking any
simple C- code 12
Experiment 02 : Develop a program to simulate commercial calculator
Develop a program to solve simple computational problems using antimetic
calculator (No built-in math function)
Experiment 03 ' Develop a program to compute the roots of a quadratic equation
by accepting the coefficients. Print appropriate messages
Develop a program to compute the roots of a guadratic equation by accepting the
coefficients. Print appropriate messages14
Experiment 04 : Develop a program to check for palindrome
Develop a program to find the reverse of a positive integer and check for
palindrome or not. Display appropriate messages16
Experiment 05 : Write a program to read the name of the user, number of units
consumed and print out the charges
An electricity board charges the following rates for the use of electricity: for the
first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond
300 Units Rs 1 per Unit. All users are charged a minimum of Rs. 100 as meter
charge. If the total amount is more than RS 400, then an additional surcharge of
15% of total amount is charged. Write a program to read the name of the user,
number of units consumed and print out the charges
number of units consumed and print out the charges
number of units consumed and print out the charges
number of units consumed and print out the charges
number of units consumed and print out the charges
number of units consumed and print out the charges
number of units consumed and print out the charges
number of units consumed and print out the charges
number of units consumed and print out the charges
number of units consumed and print out the charges
number of units consumed and print out the charges

	Develop a Program to compute Sin(x) using Taylor series approximation. Compa your result with the built- in Library function. Print both the results with	re
	appropriate messages	.22
	Experiment 10 : Write functions to implement string operations	.23
	Write functions to implement string operations such as compare, concatenate.	
	string length. Convince the parameter passing techniques	23
	Experiment 11 Develop a program to sort the given set of N numbers using	
	Rubble sort	21
	Double soft	24
	Every a program to sort the given set of in humbers using Bubble sort	.24
	Experiment 12 : Develop a program to find the square root of a given number N.	.24
	Develop a program to find the square root of a given number N and execute for	all
	possible inputs with appropriate messages. Note: Don't use library function sqrt(n)
		.24
	Experiment 13 : Implement structures to compute average- marks and the	
	students scoring above and below the average marks for a class of N students	.25
	Implement structures to read, write, compute average- marks and the students	Ŭ
	scoring above and below the average marks for a class of N students	25
	Experiment 14 Develop a program using pointers to compute the sum mean an	. <u>と</u> り いろ
	experiment 14 .Develop a program using pointers to compute the sum, mean an	iu cc
	standard deviation	20
	Develop a program using pointers to compute the sum, mean and standard	_
	deviation of all elements stored in an array of n real numbers	.26
	Experiment 15: Implement Recursive functions for Binary to Decimal Conversion	27
	Implement Recursive functions for Binary to Decimal Conversion	.27
F.	Content to Experiment Outcomes	28
	1. TI PA Parameters	28
	2 Concents and Outcomes	20
		-9

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	BE	Program:	IS
Year / Semester:	IZ II	Academic Year:	2019-20
Course Title:	C Programming Laboratory	Course Code:	18CPL17
Credit / L-T-P:	1/0-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	-
Lab. Plan Author:	Manjula K	Sign	Dt :
Checked By:		Sign	Dt :

2. Laboratory Content

Expt	Title of the Experiments	Lab Hou rs	Concept	Blooms Level
1	Familiarization with programming environment, concept of naming the program files, storing, compilation, execution and debugging. Taking any simple C- code	2	Execution of simple C Code	L3 Apply

	PART-A			
2	Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)	2	Arithmetic Operators	L3 Apply
3	Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.	3	Decision- making statements	L3 Apply
4	Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages	2	Looping statements	L3 Apply
5	An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400, then an additional surcharge of 15% of total amount is charged. Write a program to read the name of the user, number of units consumed and print out the charges	3	Decision- making statements	L3 Apply
6	Introduce 1D Array manipulation and implement Binary search.	3	Linear representatio n of 1-D arrays	L4 Analyze
7	Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)	3	Modular representatio n	L4 Analyze
	PART-B			
8	Develop a program to introduce 2D Array manipulation and implement Matrix multiplication and ensure the rules of multiplication are checked.	3	Linear representatio n of 2-D arrays	L4 Analyze
9	Develop a Program to compute Sin(x) using Taylor series approximation. Compare your result with the built- in Library function. Print both the results with appropriate messages.	3	Modular Representatio n	L4 Analyze
10	Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.	3	String operations	L4 Analyze
11	Develop a program to sort the given set of N numbers using Bubble sort.	3	Data arrangement	L4 Analyze
12	Develop a program to find the square root of a given number N and execute for all possible inputs with appropriate messages. Note: Don't use library function sqrt(n).	3	Modular programming	L4 Analyze
13	Implement structures to read, write, compute average- marks and the students scoring above and below the average marks for a class of N students.	3	Derived datatype	L4 Analyze
14	Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers	3	Address of memory location	L4 Analyze
15	Implement Recursive functions for Binary to Decimal Conversion	3	Self- invoking functions	L3 Apply

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	-
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Programming in ANSI C ,E. Balaguruswamy, 7 th Edition,Tata McGraw-Hill		In Library
	The C Programming Language ,Brian W. Kernighan and Dennis M.		In Library
	Ritchie, Prentice Hall of India.		-
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	Sumitabha Das, Computer Fundamentals & C Programming, Mc Graw		In Library
	Hill Education.		-

	Gary J Bronson, ANSI C Programming, 4 th Edition, Ceneage Learning		
	Vikas Gupta: Computer Concepts and C Programming, Dreamtech Press		
	2013.		
	R S Bichkar, Programming with C, University Press, 2012		
	V Rajaraman: Computer Programming in C, PHI, 2013.		
	Basavaraj S. Anami, Shanmukhappa A Angadi, Sunilkumar S. Manvi,		
	Computer Concepts and C Programming: A Holistic Approach to		
	Learning C, Second edition, PHI India, 2010.		
С	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/watch?v=OeZm1jHQMgs		
C2	https://www.youtube.com/watch?v=aj_X9UwHXac		
	https://www.youtube.com/watch?v=eytkPcvxb7o		
C3	https://www.youtube.com/watch?v=kT9vxEtV130		
C4	https://www.youtube.com/watch?v=xB3OnNnhDrU		
C5	https://www.youtube.com/watch?v=LEgitOGtgkM		
C6	https://www.youtube.com/watch?v=u93_v49rEx0		
C7	https://www.youtube.com/watch?v=j1-68rf0wsg		
C8	https://www.youtube.com/watch?v=Ranc3Vvjl88		
C9	https://www.edureka.co/blog/pointers-in-c/		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
		?	In lib
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://www.learn-c.org/		
2	http://www.c4learn.com/learn-c-programming-language/		

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have team the following courses / Topics with described content						
Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms
	Code					Level

Students must have learnt the following Courses / Topics with described Content

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms
				Level

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Start windows Operating system	
2	Open the Turbo C text editor screen in Windows	
3	Select new file	
4	Write the program	
5	Save the program with ". c" extension	
6	Compile the program using Alt + F9	
7	Press Ctrl + F9 to Run to execute the Program	
8	Press Alt+F5 to view the output of the program at the output screen	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
			Hours		Method	Method	Level
-	-	At the end of the experiment, the student should be able to	-	-	-	-	-
1	18CPL17.1	Develop execution of C code using Turbo C compiler	02	Execution of simple C Code	Demons trate	Viva & presentation	L3 Apply
2	18CPL17.2	Develop a C code using Conditional branching statements	08	Decision- making statements	Demons trate	Viva & presentation	L3 Apply
3	18CPL17.3	Develop a C code using Looping statements	03	Looping statements	Demons trate	Viva & presentation	L3 Apply
4	18CPL17.4	Develop a C code using Arrays	08	Linear representati on	Demons trate	Viva & presentation	L4 Analyze
5	18CPL17.5	Develop a C code using user	09	Modular	Demons	Viva &	L4

		defined functions.		representati	trate	presentation	Analyze
				on			
6	18CPL17.6	Develop a C code using String	03	String	Demons	Viva &	L4
		manipulation functions parameters		operations	trate	presentation	Analyze
7	18CPL17.7	Develop a C code using structures	03	Derived	Demons	Viva &	L4
<i>'</i>	,,,			datatype	trate	presentation	Analvze
						I	
8	18CPL17.8	Develop a C code using pointers	03	Address of	Demons	Viva &	L4
				memory	trate	presentation	Analyze
				location		•	
9	18CPL17.9	Develop a C code using recursion	03	Self-	Demons	Viva &	L3
				invoking	trate	presentation	Apply
				functions			
-		Total	42	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Computer Science	CO1	L3
2	Banking sectors	CO2	L3
3	Theory of Algebra	CO2	L3
4	In Number theory ,DNA sequences	CO3	L3
5	Electricity department	CO2	L3
6	Applications of the binary search algorithm include sets,, trees dictionaries, bags,	CO4	L3
	bag trees, bag dictionaries, hash sets, hash tables, maps		
7	Theory of Algebra	CO3	L3
8	Computer Graphics	CO4	L4
9	Power flow analysis of electrical power systems	CO3	L4
10	Database Management system	CO5	L4
11	Bubble sort is used in programming TV remote to sort channels on the basis of	CO4	L3
	longer viewing time		
12	Mathematical statistics	CO3	L3
13	Computer Architecture	CO6	L3
14	Memory allocation	CO7	L3
15	Computer Technology for encoding and decoding	CO8	L3
Noto:)	V/rite 1 or 2 applications por CO		

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt.	Map	ping	Mapping	Justification for each CO-PO pair	Level
			Level		
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L3	The knowledge of structure can be applied to solve complex problems.	L3
	CO1	PO2	L3	These fundamental concepts of CS can be applied to solve complex problems.	L3
	CO1	PO3	L3	Efficient algorithms can be designed based on their time complexity.	L3
	CO1	PO5	L3	Complexity analysis can be applied in research and other innovative areas.	L3
2,3,5	CO2	PO1	L3	The knowledge of structure can be applied to solve complex problems.	L3
	CO2	PO2	L3	These fundamental concepts of CS can be applied to solve complex problems.	L3
	CO2	PO3	L3	Efficient algorithms can be designed based on their time complexity.	L3
	CO2	PO5	L3	Complexity analysis can be applied in research and other innovative areas.	L3

4	CO3	PO1	L3	The knowledge of structure can be applied to solve complex problems.	L3
	CO3	PO2	L3	These fundamental concepts of CS can be applied to solve complex problems.	L3
	CO3	PO3	L3	Efficient algorithms can be designed based on their time complexity.	L3
	CO3	PO5	L3	Complexity analysis can be applied in research and other innovative areas.	L3
6,8,11	CO4	PO1	L4	The knowledge of structure can be applied to solve complex problems.	L4
	CO4	PO2	L4	These fundamental concepts of CS can be applied to solve complex problems.	L4
	CO4	PO3	L4	Efficient algorithms can be designed based on their time complexity.	L4
	CO4	PO5	L4	Complexity analysis can be applied in research and other innovative areas.	L4
7,9,12	CO5	PO1	L4	The knowledge of structure can be applied to solve complex problems.	L4
	CO5	PO2	L4	These fundamental concepts of CS can be applied to solve complex problems.	L4
	CO5	PO3	L4	Efficient algorithms can be designed based on their time complexity.	L4
	CO5	PO5		Complexity analysis can be applied in research and other innovative areas.	
10	CO6	PO1	L4	The knowledge of structure can be applied to solve complex problems.	L4
	CO6	PO2	L4	These fundamental concepts of CS can be applied to solve complex problems.	L4
	CO6	PO3	L4	Efficient algorithms can be designed based on their time complexity.	L4
	CO6	PO5	L4	Complexity analysis can be applied in research and other innovative areas.	L4
13	CO7	PO1	L4	The knowledge of structure can be applied to solve complex problems.	L4
	CO7	PO2	L4	These fundamental concepts of CS can be applied to solve complex problems.	L4
	CO7	PO3	L4	Efficient algorithms can be designed based on their time complexity.	L4
	CO7	PO5	L4	Complexity analysis can be applied in research and other innovative areas.	L4
14	CO8	PO1	L4	The knowledge of structure can be applied to solve complex problems.	L4
	CO8	PO2	L4	These fundamental concepts of CS can be applied to solve complex problems.	L4
	CO8	PO3	L4	Efficient algorithms can be designed based on their time complexity.	L4
	CO8	PO5	L4	Complexity analysis can be applied in research and other innovative areas.	L4
15	CO9	PO1	L3	The knowledge of structure can be applied to solve complex problems.	L3
	CO9	PO2	L3	These fundamental concepts of CS can be applied to solve complex problems.	L3
	CO9	PO3	L3	Efficient algorithms can be designed based on their time complexity.	L3
	CO9	PO5	L3	Complexity analysis can be applied in research and other innovative areas.	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

				_							_							
-	-	Experiment Outcomes					Ρ	rog	ram	ι Οι	utco	ome	es					-
Expt.	CO.#	At the end of the experiment	PO	PC	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	18CPL17.1	Develop execution of C code	2.5	2.5	2.5		2.5											L3
		using Turbo C compiler																
2,3,5	18CPL17.2	Develop a C code using	2.5	2.5	2.5		2.5											L3
		Conditional branching																
		statements																
4	18CPL17.3	Develop a C code using Looping	2.5	2.5	2.5		2.5											L3
		statements																
6.8,11	18CPL17.4	Develop a C code using Arrays	2.5	2.5	2.5		2.5											L4
7.9,12	18CPL17.5	Develop a C code using user	2.5	2.5	2.5		2.5											L4
		defined functions.																
10	18CPL17.6	Develop a C code using String	2.5	2.5	2.5		2.5											L4

		manipulation functions																
13	18CPL17.7	Develop a C code using	2.5	2.5	2.5		2.5											L4
		structures																
14	18CPL17.8	Develop a C code using pointers	2.5	2.5	2.5		2.5											L4
15	18CPL17.9	Develop a C code using	2.5	2.5	2.5		2.5											L3
		recursion																
-	18CPL17	Average attainment (1, 2, or 3)	2.5	2.5	2.5	- 1	2.5											-
-	PO, PSO	1.Engineering Knowledge; 2.Prol	bler	n A	nal	ysis,	; 3.1	Desi	ign	/	Dei	velc	pr	neni	t of	Sol	luti	ons;
		4.Conduct Investigations of Com	ple	x P	rob	lem	s; 5	.Mo	de	rn T	Τοο	l Us	sage	e; 6	.Th	e Er	ngir	ieer
		and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork;																
		10.Communication; 11.Project Management and Finance; 12.Life-long Learning;																
		S1.Software Engineering; S2.Data Base Management; S3.Web Design																

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi		Nc	o. of qu	lestior	n in Exa	am		CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Familiarization C Program	02	1	-	-	-	-	-	1	CO1	L3
	PART-A										
2	Commercial calculator	02	1	-	-	-	-	-	1	CO2	L3
3	Quadratic equation	03	1	-	-	-	-	-	1	CO2	L3
4	palindrome or not.	02	1	-	-	-	-	-	1	CO3	L3
5	Electricity Bill	03	1	-	-	-	-	-	1	CO2	L3
6	Binary search	03	-	1	-	-	-	-	1	CO4	L4
7	Prime number or not	03	-	1	-	-	-	-	1	CO5	L4
	PART-B										
8	Matrix multiplication .	03	-	1	-	-	-	-	1	CO4	L4
9	Sin(x) using Taylor series	03	-	1	-	-	-	-	1	CO5	L4
10	string operations such as	03	-	1	-	-	-	-	1	CO6	L4
	compare, concatenate, string										
	length										
11	Bubble Sort	03	-	-	1	-	-	-	1	CO4	L4
12	square root of a given number N	03	-	-	1	-	-	-	1	CO3	L4
13	structures to read, write, compute	03	-	-	1	-	-	-	1	CO7	L4

	average- marks										
14	the sum, mean and standard deviation	03	-	-	1	-	-	-	1	CO8	L4
15	Binary to Decimal Conversion	03	-	-	1	-	-	-	1	CO5	L3
-	Total	42	5	5	5	-	-	-	15	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	40	CO1, CO2, CO3	L3
CIA Exam – 2	40	CO3, CO4, CO5,	L3,L4
CIA Exam – 3	40	CO6,CO7, CO8,CO9	L3,L4
Assignment - 1			
Assignment - 2			
Assignment - 3			
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities – define –			
Slip test			
Final CIA Marks	40	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	20 Marks for each Expt
3	Internal Exam Assessment	15 Marks
4	Internal Assessment	40 Marks
5	SEE	60Marks
-	Total	100 Marks

E. EXPERIMENTS

Experiment 01: Familiarization with programming environment by taking any simple C-code.

-	Experiment No.:	1	Marks		Date		Date Conducted		
1	Title	Fan pro sim	niliarization gram files, ple C- code	with progra storing, com	mming env pilation, exe	ironment, c ecution and	oncept of debugging.	naming Taking	the any
2	Course Outcomes	Dev	velop execut	ion of C code	e using Turbo	C compiler			
3	Aim	Exe	ercise on sim	ple C progra	m using Turb	o C compilei	ſ		
4	Material / Equipment Required	Lab	o Manual						
5	Theory, Formula, Principle, Concept	The Cor	eory- Basic s ncept-writing	tructure of C g & Executior	C program, 1 of Simple C	program			
6	Procedure, Program, Activity, Algorithm, Pseudo Code		step 1: s step 2: step 3: step 4: step 5:it step 6:r step 7:\	start write prograr save the prog compile f error then c un /iew the outp	n gram orrect the en out	rors			

		step 7:stop
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	-
8	Observation Table,	welcome to SKIT college this is the first program in each lab
	Output	this is the first program in ccp tab
9	Sample Calculations	-
10	Graphs, Outputs	-
11	Results & Analysis	-
12	Application Areas	Computer Science
13	Remarks	-
14	Faculty Signature with Date	-

Experiment 02 : Develop a program to simulate commercial calculator

-	Experiment No.:	2	Marks		Date Planned		Date Conducted	
1	Title	Deve expre calcı	evelop a program to solve simple computational problems using arithmetic pressions and use of each operator leading to simulation of a commercial lculator. (No built-in math function)					
2	Course Outcomes	Deve	elop a C code	using Condi	itional branch	ning stateme	ents	
3	Aim	To so	lve simple a	rithmetic ope	erations using	operators w	ithout built-i	n functions
4	Material / Equipment Required	Lab I	Manual					
5	Theory, Formula Principle, Concept	To ap	ply Decision	-making stat	ements with	out using bui	lt-in function	
6	Procedure, Program, Activity Algorithm, Pseudo Code	Step Step Step Step	1: [start] 2: [accept the read a,b,o 3: [perform the if(op=='+') else if(op= else if(op= f if(b!=0) re else if(op= f if(b!=0) re else if(op= f if(b!=0) re else f printf("i exit(0); } 4: [print the r print a,op, 5: [finished] 6: stop	e input] p he arithmetic res=a+b; =='-') res=a-b; =='') s=a/b; s=a/b; divide by zero llegal operat esult] b,res	c operation o o\n"); or\n");	n variables a	.,b]	

7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
	Expected Graph	
8	Observation Table,	Enter the expression
	Look-up Table,	5+6=11
	Output	Enter the expression
		6-5=1
		Enter the expression
		5*6=30
		Enter the expression
		6/2=3
		Enter the expression
		6@2
		Illegal operator
	Sample	-
	Calculations	
10	Graphs, Outputs	-
11	Results & Analysis	-
12	Application Areas	banking sectors
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 03 : Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.

1 Title Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 2 Course Outcomes Develop a C code using Conditional branching statements 3 Aim To compute quadratic equation through coefficients 4 Material Equipment Required Lab Manual 5 Theory, Formula, To appy Decision-making statements in quadratic equation Principle, Concept 6 Procedure, Occept Step1: Istart] 7 Program, Activity, Step2: Itake input] Algorithm, Pseudo Accept a.b.c for non zero values Code Step1: Istart] D-b'b-4'a'c Step2: Ifind discriminate] D-b'b-4'a'c Step4: ICheck the nature] If (D=-0) print'roots are real & equal' r1-(-b)/(2'a) r2-(-b)/(2'a) r2-(-b)/(2'a) print'roots are real & distinct' r1-(-besqrt(d))/(2'a) r2 -(-b-sqrt(d))/(2'a) r2 -(-b-sqrt(d))/(2'a) print'roots are imaginary'	-	Experiment No.:	3	Marks		Date Planned		Date Conducted	
2 Course Outcomes Develop a C code using Conditional branching statements 3 Aim To compute quadratic equation through coefficients 4 Material Lab Manual Equipment Required Lab Manual 5 Theory, Formula, To appy Decision-making statements in quadratic equation 6 Procedure, Program, Activity, Step2: Itake input! Algorithm, Pseudo Accept a.b.c for non zero values Code Step3: IFind discriminate] D=b'b-4'a'c Step4: ICheck the nature] If (D=-0) If (D=-0) print 'roots are real & equal' r1=(-b)/(2'a) r2=(-b)/(2'a) print rint rint Else if(d>0) print roots are real & distinct' r1=(-b*sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) print r1.r2 end if else print'roots are imaginary'	1	Title	Deve the c	lop a progra oefficients. P	m to compu rint appropria	te the roots te messages	of a quadrat S.	ic equation b	by accepting
3 Aim To compute quadratic equation through coefficients 4 Material / Lab Manual Equipment Required	2	Course Outcomes	Deve	lop a C code	using Condi	tional branch	ing stateme	ents	
4 Material /Lab Manual Equipment Required 5 Theory, Formula. To appy Decision-making statements in quadratic equation Principle, Concept Step1: [start] Program, Activity. Step2: [take input] Algorithm, Pseudo Accept a.b.c for non zero values Code Step3: [Find discriminate] D=b'b-4'a'c Step4: [Check the nature] If (D==0) print' roots are real & equal' r1=(-b)/(2'a) r2=(-b)/(2'a) print roots are real & distinct' r1=(-b+sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) print r1,r2 end if else print'roots are imaginary'	3	Aim	То со	mpute quad	ratic equation	n through co	efficients		
5 Theory, Formula, To appy Decision-making statements in quadratic equation 9 Principle, Concept 6 Procedure, Step1: [start] Program, Activity, Step2: [take input] Algorithm, Pseudo Accept a,b,c for non zero values Code Step3: [Find discriminate] D=b'b-4'a'c Step4: [Check the nature] If (D==0) print' roots are real & equal' r1=(-b)/(2'a) r2=(-b)/(2'a) print r1,r2 end if Else if(d>0) print'roots are real & distinct' r1=(-b)-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=(-b-sqrt(d))/(2'a) r2=end if end if else	4	Material / Equipment Required	Lab N	Manual					
6 Procedure, Step1: [start] Program, Activity.Step2: [take input] Algorithm, Pseudo Code Step3: [Find discriminate] D=b*b-4*a*c Step4: [Check the nature] If (D==0) print' roots are real & equal' r1=(-b)/(2*a) r2=(-b)/(2*a) print r1,r2 end if Else if(d>0) print'roots are real & distinct' r1=(-b+sqrt(d))/(2*a) r2 = (-b-sqrt(d))/(2*a) print r1,r2 end if else print'roots are imaginary'	5	Theory, Formula, Principle, Concept	To ap	py Decision-	-making state	ements in qua	adratic equa	tion	
print roots are imaginary	6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step1 Step2 Step2	I: [start] 2: [take input] Accept a,I D=b*b-4*a 3: [Check the If (D==0) pr r1: r2 pr end if Else if(d>0 pr r1: r2 pr end if else	p,c for non ze minate] *c nature] int' roots are =(-b)/(2*a) =(-b)/(2*a) int r1,r2)) int'roots are r =(-b+sqrt(d))/ =(-b-sqrt(d))/ int r1,r2	ero values real & equal' real & distinc (2*a) ((2*a)	ť		
				pi					

		Step5: [finished]
		Stop
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
_	Expected Graph	
8	Observation Table,	case 1:
	Look-up Table,	enter the non-zero coefficient: 1 0 1
	Output	invalid input
		udse 2.
		enter the non-zero coemcient. 123
		complex roots root1- 1 000000+i1 414214
		$r_{00}t_{2}=1.000000-i1.414214$
		rase 2'
		enter the non-zero coefficient: 5 5 1
		real roots
		root1=-0.276393
		root2=-0.723607
		case 4:
		enter the non-zero coefficient: 1 2 1
		equal roots
		root1=-1.000000
		root2=-1.000000
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Theory of Algebra
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 04 : Develop a program to check for palindrome.

-	Experiment No.:	4	Marks		Date Planned		Date Conducted	
1	Title	Deve palin	elop a progr ndrome or no	am to find ⁻ t. Display app	the reverse propriate me	of a positive ssages	e integer and	d check for
2	Course Outcomes	Deve	elop a C code	e using Repe	titive statem	ents		
3	Aim	To re or no	everse a pos ot	itive integer a	and check w	hether a give	en number is	palindrome
4	Material / Equipment Required	Lab	Manual					
5	Theory, Formula, Principle, Concept	To a	oply Looping	constructs				
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step	1: [start] 2: [read no] Read n 3: [assign rev reverse=0 4: [reverse th while(n≠0 d n re ond while	verse 0 and n 0,m=n 1e number] 0) igit=n%10 =n/10 everse=revers	to m] se*10+digit			

		Step5: [Check whether reversed and original numbers are same] if(m==reverse) print "number is a palindrome" else
		print "number is not a palindrome"
		end if
		Step6: [finished]
		Stop
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
Q	Observation Table	c3c0.1 :
0	Look-up Table	enter the number
	Output	1221
		number is palindrome
		case 2 :
		enter the number:
		1234
		number is not palindrome
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	In Number theory ,DNA sequences
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 05 : Write a program to read the name of the user, number of units consumed and print out the charges.

-	Experiment No.:	5	Marks		Date Planned		Date Conducted	
1	Title	An electricity board charges the following rates for the u electricity: for the first 200 units 80 paise per unit: for the ne units 90 paise per unit: beyond 300 units Rs 1 per unit. All us charged a minimum of Rs. 100 as meter charge. If the total amount is mc Rs 400, then an additional surcharge of 15% of total amount is charged. program to read the name of the user, number of units consumed and p the charges						he use of e next 100 All users are is more than ged. Write a and print out
2	Course Outcomes	Deve	elop a C code	e using Condi	tional branch	ning stateme	ents	
3	Aim	To re cons	ead the name umed using l	e of the use If-else statem	r, number of nents	⁻ units consu	umed and pr	int the units
4	Material / Equipment Required	Lab I	Manual					
5	Theory, Formula, Principle, Concept	To Co	ompute the e	electricity unit	s consumpti	on using If-e	else statemer	its
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step	1: [start] 2: [read the ii read name 3: [perform tl if(unit>=0 & { Rs=unit Rs=Rs+ } else	nput] e,unit he operation && unit<=200) :*0.80; 100; if(unit<=300 8	on unit cons & unit>200)	sumed]		

		Rs=unit [°] 0.90;
		KS=KS+100;
		l alco if(upit>200)
		Rs=unit*1.00
		Rs=Rs+100:
]
		if(Rs>400)
		[
		Rs=Rs+(0.15*Rs);
]
		Step 4: [print the result]
		print name,unit,Rs
		Step 5: [finished]
		step 6: [stop]
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
0	Expected Graph	
8	Observation Table,	1.enter the customer name: Sandhya
	Look-up Table,	enter the number of units consumed:200
	Oulpul	number of units consumed is 260 total cost(Dc) is 224,000,000
		a ontor the customer name: solvimua
		enter the number of units consumed:180
		the customer name is: sowmya
		number of units consumed is 180 total cost(Rs) is 244,000,000
		3.enter the customer name: Divva
		enter the number of units consumed:380
		the customer name is: sandhya
		number of units consumed is 380 total cost(Rs) is 552.000000
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Electricity department
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 06 : Introduce 1-D Array manipulation and implement Binary search.

-	Experiment No.:	6	Marks		Date Planned		Date Conducted				
1	Title	Intro	duce 1D Array	y manipulatio	on and implen	nent Binary	search				
2	Course Outcomes	Deve	velop a C code using Arrays								
3	Aim	To ap	ply 1-Dimen	sional array r	nanipulation a	and impleme	ent Binary sea	arch			
4	Material / Equipment Required	Lab I	Manual								
5	Theory, Formula, Principle, Concept	Linea	ar representa	tion of 1-D ai	rrays						
6	Procedure,	Step	1: [start]								
	Program, Activity,	Step	2: [read the i	nput]							
	Algorithm, Pseudo	,	read n								
	Code	Step	3: [read the a	array elemen	ts]						
			for(i=0;i <n;< th=""><th>(i++)</th><th></th><th></th><th></th><th></th></n;<>	(i++)							

		read (arr[i]) Stop (Jepter the number to be searched)
		Read num
		Step 5: [search for key element through array]
		low=0;
		high=n-1;
		while(low<=high)
		{
		mid=(low+high)/2;
		If(arr[mid]==num)
		nrint(num is present in the array at position mid+1);
		getch():
		exit(0):
		}
		else if(arr[mid]>num)
		high=mid-1;
		else
		low=mid+1;
		} print(num doos not ovist in the array);
		Sten 6: [finished]
		stop
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
0	Expected Graph	enter the provedence of elements in the environic seconding evelow.
8	Observation Table,	enter the number of elements in the array in ascending order:
	Outout	5 enter the elements:
		12
		23
		34
		45
		56
		enter the number that has to be searched: 34
0	Sampla	34 is present in the array at position= 3
9	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Applications of the binary search algorithm include sets,, trees dictionaries, bags,
		bag trees, bag dictionaries, hash sets, hash tables, maps
13	Remarks	
14	Faculty Signature	
1	with Data	

Experiment 07 : Implement using functions to check whether the given number is prime .

-	Experiment No.:	7	Marks			Date				Date		
						Plannec	1		Cor	nducte	d	
1	Title	Imp prim	mplement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)									
2	Course Outcomes	Deve	lop a C code	using	Repet	itive stater	ments	S				
3	Aim	To c funct	heck wheth ion	er the	given	number	is p	rime w	rithout	using	built-in	math

4	Material /	Lab Manual
	Equipment	
	Required	
5	Theory, Formula,	Linear representation of 1-D arrays
	Principle, Concept	
6	Procedure,	Step 1: [start]
	Program, Activity,	Step 2: [read the input]
	Algorilnm, Pseudo	read n
	Code	Stan ailta chack whathar tha number is prime or nat
		int is prime (int m)
		int xi.min.maxi:
		if(m==0)
		printf("enter x\n");
		scanf("%d",&x);
		for(i=2;i<=x-1;i++)
		{
		if(X%i==0)
		return(0);
		1
		return(1) [.]
		}
		p= isprime(n)
		Step 4: [print the prime number]
		if(p==1) print(n is prime)
		else
		print(n is not prime)
		step o: (finished)
7	Block Circuit	5.66
ľ	Model Diagram.	
	Reaction Equation,	
	Expected Graph	
8	Observation Table,	Case 1:
	Look-up Table,	
	Output	enter 1 for genarating prime numbers till N
		enter 0 to check whether the given number is prime or not
		1
		enter the minimum value and the maximum value
		10 20
		the list of prime nois are :
		11 13 1/ 19
		Case 2
		enter 1 for generating prime numbers till N
		enter 0 to check whether the aiven number is prime or not
		0
		enter the number
		5
		it is a prime number
		Uase 3: optor 1 for gonorating prime numbers till N
		enter 1 tot generating prime numbers till N enter 0 to check whether the given number is prime or not

		0
		enter the number
		6
		it is not a prime number
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Theory of Algebra
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 08 : Develop a program to implement Matrix multiplication.

	- Experiment No.:	8	Marks		Date Planned		Date Conducted		
	1 Title	Deve multi	lop a progra	am to introdu ensure the r	uce 2D Array rules of multip	manipulatic plication are	on and imple checked.	ment Matrix	
	2 Course Outcomes	Deve	lop a C code	using Arrays	5				
	3 Aim	To im	Iplement ma	trix multiplica	ation				
	4 Material / Equipment Required	Lab N	ıb Manual						
!	5 Theory, Formula Principle, Concept	,Linea	ar representa	tion of 2-D ar	rays				
	6 Procedure, Program, Activity Algorithm, Pseudo Code	Step Step Step Step Step Step step	1: [start] 2: read the si 3: [validate] if matrix A print matr 4: read the e 5: read the e 6: compute r 7: stop	ze of Matrix / column not (ix multiplicati lements for N lements for N matrix multip	A and B equal to matr ion is not pos Matrix A Matrix B lication	ix B row sible			
-	7 Block, Circuit Model Diagram Reaction Equation Expected Graph	, ,							
	8 Observation Table Look-up Table Output	the r the r the r the r	ter the size of 2 2 the size of n 2 2 the element 1 2 3 4 matrix a is 2 4 the element 4 3 2 1 matrix b is 4 3 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f matrix a natrix b ts of matrix a ts of matrix b rix c is					

		2. enter the size of matrix a
		1 2
		enter the size of matrix b
		1 2
		Multiplication is not possible
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Computer Graphics
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 09 : Develop a Program to compute Sin(x) using Taylor series approximation.

-	Experiment No.:	9	Marks		Date Planned		Date Conducted				
1	Title	Deve Com appro	evelop a Program to compute Sin(x) using Taylor series approximation. Ompare your result with the built- in Library function. Print both the results with Opropriate messages.								
2	Course Outcomes	Deve	lop a C code	using Repet	itive stateme	ents					
3	Aim	То сс	ompute sin(x)	using Taylor	series and c	ompare with	built- in Libr	rary function			
4	Material / Equipment Required	Lab M	Manual								
5	Principle, Concept	Modi	ular Represei	ntation							
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step Step Step step	1: [start] 2: read the v 3: read the n 4: compute s 5: compare u 6: stop	alue of x in de umber of terr sin(x) value using built-in	egrees ms more tha function	n three					
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	_									
8	Observation Table, Look-up Table, Output	enter 30 enter	r x in degrees r the no. of te	s,eg:45,60,90. rms greater t	etc han three 4						
		sin va sin va	alue is 0.5000 alue using bu	059 Iilt-in functior	n is 0.500059	,					
9	Sample Calculations										
10	Graphs, Outputs										
11	Results & Analysis										
12	Application Areas	Powe	er flow analys	sis of electrica	al power sys	tems					
13	Remarks										
14	Faculty Signature with Date										

Experiment 10 : Write functions to implement string operations.

-	Experiment No.:	10	Marks		Date Planned		Date Conducted				
1	Title	Write string	ite functions to implement string operations such as compare, concatenate, ing length. Convince the parameter passing techniques.								
2	Course Outcomes	Deve	lop a C code	e using String	manipulatio	n functions					
3	Aim	To im	iplement stri	ng operation	S						
4	Material / Equipment Required	Lab N	Manual								
5	Theory, Formula, Principle, Concept	String	ng operations								
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step Step Step step	1: [start] 2: read the ty 3: compare t 4: concatena 5: compute s 6: stop	wo strings wo strings ar ate two string string length	nd print the re s and print th	esult ne concatena	ated string				
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph										
8	Observation Table, Look-up Table, Output	enter enter string lengt	the first strir the second s are not eq h of the strin atenated stri	ng: sandh string: div ual Ig is 7 ng is sandhy	ya 'ya vadivva						
9	Sample Calculations				,,						
10	Graphs, Outputs										
11	Results & Analysis										
12	Application Areas	Datal	base Manage	ement systen	n						
13	Remarks										
14	Faculty Signature with Date										

Experiment 11 :Develop a program to sort the given set of N numbers using Bubble sort.

-	Experiment No.:	11	Marks		Date		Date Conducted		
1 Title Develop a program to sort the given set of N numbers using Bub								sort.	
2	Course Outcomes	Deve	elop a C code using Arrays						
3	Aim	To ar	range the nu	mbers in asc	ending orde	r using bubb	ole sort techn	ique	
4	Material /	Lab N	Manual						
	Equipment								
	Required								
5	Theory, Formula,	Data	arrangemen	t					
	Principle, Concept								
6	Procedure,	Step	1: [start]						
	Program, Activity,	Step	2: read size of	of array					
	Algorithm, Pseudo	Step	3: read the a	rray element	S				
	Code	Step	4: sort the ar	ray elements	5				
		Step	5: print the s	orted array e	lements				
		step	6: stop						
7	Block, Circuit,								
	Model Diagram,								

	Reaction Equation	
	Expected Graph	
8	Observation Table	enter the maximum no. of elements in the array:
	Look-up Table	5
	Output	Enter the elements in to the array
		10 45 2 6 80
		the sorted array is:
		2
		6
		10
		45
		80
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Bubble sort is used in programming TV remote to sort channels on the basis of
		longer viewing time
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 12 : Develop a program to find the square root of a given number N

-	Experiment No.:	12	Marks		Date Planned		Date Conducted		
1	1 Title Develop a program to find the square root of a given number N and execuall possible inputs with appropriate messages. Note: Don't use library fur sqrt(n)								
2	Course Outcomes	Deve	lop a C code	using Repet	itive stateme	ents			
3	Aim	To fin	d the square	e root of a give	en number N	l without usi	ng library fun	ction sqrt(n)	
4	Material / Equipment Required	Lab N	Manual						
5	Theory, Formula, Principle, Concept	Deriv	ed datatype						
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step Step step	1: start 2: read n 3: compute s 4: print the so 5: stop	square root us quare root of	sing user det a number	fined function	n		
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph		<u> </u>						
8	Observation Table,	Case	1:						
	Look-up Table,		enter the no)					
	Output		64						
			the sqrt is 8	.000					
		Case	2:						
			12)					
			the sart is 3	.464					
9	Sample Calculations			1 - 1					
10	Graphs, Outputs								
11	Results & Analysis								
12	Application Areas	Math	ematical stat	istics					

13 Remarks	
14 Faculty Signature	
with Date	

Experiment 13 : Implement structures to compute average- marks and the students scoring above and below the average marks for a class of N students.

-	Experiment No.:	13	Marks		Date		Date		
1	Title	المعيما			Planned				
		imple scorii	plement structures to read, write, compute average- marks and the students pring above and below the average marks for a class of N students.						
2	Course Outcomes	Deve	lop a C code	using struct	ures				
3	Aim	To im	plement stru	acture to con	npute studen	t average m	harks for N stu	udents	
4	Material /	Lab N	1anual						
	Equipment								
_	Required	<u> </u>							
5	Principle, Concept	Deriv	ed datatype						
6	Procedure,	Step	1: start	<u> </u>					
	Program, Activity,	Step	2: read numb	per of studen	ts				
	Algorithm, Pseudo	Step	3: read the si	ludent marks					
	Code	Step	4: compute a	average mark	(S balayy ayara	no mortico			
		stop	5. print mark 8. stop	s above and	Delow average	Je marks			
7	Block Circuit	step	J. Stop						
/	Model Diagram	-							
	Reaction Equation								
	Expected Graph								
8	Observation Table	enter	the number	of students:					
	Look-up Table	2							
	Output	enter	the roll num	ber:					
		32							
		enter	the name:						
		sand	ya						
		enter	the marks ir	2 subjects:					
		100							
		99							
		roll n	o. name subi	sub2 total	average				
		32 Sa	andya 100 99	100					
		ADOV	e Average						
		enter	the roll num	ber:					
		33							
		enter	the name:						
		vaniti	na Itho morto in	a aubiaata					
		enter	the marks in	1 2 Subjects.					
		001							
		99 roll n	name subt	sub2_total	average				
		32 Va	nitha 100 00	100	average				
		Abov	e Average						
g	Sample								
	Calculations								
10	Graphs, Outputs								
11	Results & Analysis								
12	Application Areas	Com	outer Archite	cture					
13	Remarks								
14	Faculty Signature								
	with Date								

Page # 23 / 27

Experiment 14 :Develop a program	using pointers to compute	e the sum, mean and standard deviation.
----------------------------------	---------------------------	---

-	Experiment No.:	14	Marks		Date Planned		Date Conducted	ł	
1	Title	Deve devia	evelop a program using pointers to compute the sum, mean and standard eviation of all elements stored in an array of n real numbers						
2	Course Outcomes	Deve	lop a C code	using pointe	ers				
3	Aim	To co of n r	ompute sum, eal numbers	mean and st using pointe	andard devia ers	ation of all el	ements stor	ed ir	n an array
4	Material / Equipment Required	Lab N	Manual						
5	Theory, Formula, Principle, Concept	.Addr	ess of memo	ry location					
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step Step step	1: start 2: read array 3: compute s 4: print the si 5: stop	elements sum, mean ai um, mean an	nd standard d d standard d	deviation eviation			
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
8	Observation Table, Look-up Table, Output	enter 5 Enter 2.5 5.5 6.4 8.8 10.5 the v stanc	the max no. the floating alue of sum= lard deviation	of elements point(like:3.5 33.700001 ar n is 3.082694	an array etc) elemer nd mean=6.74	nts into array 10000			
9	Sample Calculations								
10	Graphs, Outputs								
11	Results & Analysis								
12	Application Areas	Mem	ory allocatio	n					
13	Remarks								
14	Faculty Signature with Date	•							

Experiment 15: Implement Recursive functions for Binary to Decimal Conversion

-	Experiment No.:	15	Marks		Date Planned		Date Conducted		
1	Title Implement Recursive functions for Binary to Decimal Conversion								
2	Course Outcomes	Develop	o a C code	using recur	sion				
3	Aim To convert Binary to Decimal number using recursion								
4	Material /	Lab Mai	nual						
	Equipment								
	Required								
5	Theory, Formula	Self- inv	voking fun	ctions					
	Principle, Concept								
6	Procedure,	Step 1: s	start						
	Program, Activity	Step 2: r	read binar	y number					
	Algorithm, Pseudo	Step 3: 0	convert bii	nary to decir	nal using recu	rsive function	on		

	Code	Step 4: print the decimal number
		step 5: stop
7	Block, Circuit	
	Model Diagram	
	Reaction Equation	
	Expected Graph	
8	Observation Table	
	Look-up Table	
	Output	
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Computer Technology for encoding and decoding.
13	Remarks	
14	Faculty Signature	
	with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Expt-	Course Content or Syllabus	Conte	Blooms'	Final	Identified	Instruction	Assessment
#	(Split module content into 2 parts which	nt	Learnin	Bloo	Action	Methods	Methods to
	have similar concepts)	Teachi	g Levels	ms'	Verbs for	for	Measure
		ng	for	Level	Learning	Learning	Learning
		Hours	Content				
A	В	С	D	E	F	G	Н
1	Familiarization with programming	3	- L2	L3	- Illustrate		- Viva &
	environment, concept of naming the		- L3		-	Demonstr	presentation
	program files, storing, compilation,					ate	
	execution and debugging. Taking any					-	
	simple C- code.					-	Vince 9
2	Develop a program to solve simple	3	- L2	L3	- Implomon	- Domonstr	- viva &
	events using antimetic		- L3		ппрієтіен +	ato	presentation
	leading to simulation of a commercial				_	_	
	calculator (No built-in math function)					_	
3	Develop a program to compute the roots of	3	- L2	L3	_	_	- Viva &
	a quadratic equation by accepting the		- L3		Demonstr	Demonstr	presentation
	coefficients. Print appropriate messages.				ate	ate	
					-	-	
4	Develop a program to find the reverse of a	3	- L2	L3	-Illustrate	-	- Viva &
	positive integer and check for palindrome		- L3		-	Demonstr	presentation
	or not. Display appropriate messages.					ate	
						-	
5	An electricity board charges the following	3	- L2	L3	-Illustrate	-	- Viva &
	rates for the use of electricity: for the first		- L3		-	Demonstr	presentation
	200 units 80 paise per unit: for the next 100					ate	-
	units 90 paise per unit: beyond 300 units Rs					-	
	1 per unit. All users are charged a minimum						
	of Rs. 100 as meter charge. If the total						
	amount is more than RS 400, then an						
	is charged Write a program to read the						
	name of the user number of units						
	consumed and print out the charges						
6	Introduce 1D Array manipulation and	3	-13		_	_	- Viva &
	implement Binary search.		- L4		Demonstr	Demonstr	presentation

					ate	ate	
7	Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)	3	- L3 - L4	L4	- Implemen t -	- Demonstr ate - -	- Viva & presentation - -
8	Develop a program to introduce 2D Array manipulation and implement Matrix multiplication and ensure the rules of multiplication are checked.	3	- L3 - L4	L4	- Demonstr ate -	- Demonstr ate	- Viva & presentation
9	Develop a Program to compute Sin(x) using Taylor series approximation .Compare your result with the built- in Library function. Print both the results with appropriate messages.	3	- L3 - L4	L4	-Illustrate -	- Demonstr ate	- Viva & presentation
	Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.	3	- L3 - L4	L4	- Demonstr ate -	- Demonstr ate	- Viva & presentation
	Develop a program to sort the given set of N numbers using Bubble sort.	3	- L3 - L4	L4	- Demonstr ate	- Demonstr ate	-Viva & presentation
	Develop a program to find the square root of a given number N and execute for all possible inputs with appropriate messages. Note: Don't use library function sqrt(n).	3	- L3 - L4	L4	- Implemen t	- Demonstr ate	-Viva & presentation
	Implement structures to read, write, compute average- marks and the students scoring above and below the average marks for a class of N students.	3	- L3 - L4	L4	- Implemen t	- Demonstr ate	-Viva & presentation
	Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers.	3	- L3 - L4	L4	- Implemen t	- Demonstr ate	-Viva & presentation
	Implement Recursive functions for Binary to Decimal Conversion.	3	- L2 - L3	L3	- Implemen t	- Demonstr ate	-Viva & presentation

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Expt	Learning or	Identified	Final Concept	Concept	CO Components	Course Outcome
_ #	Outcome	Concents		lustification	(1 Action Verb	
π	from study	from		()V/bat all Loarning	2 Knowlodgo	
	nom study	Contout		What all Learning	2.Rhowledge,	Churdent Chevilel he
	orthe	Content		Happened from the	3.Condition /	Student Should be
	Content or			study of Content /	Methodology,	able to
	Syllabus			Syllabus. A short	4.Benchmark)	
	-			word for learning or		
				outcome)		
A	1	J	K	L	М	N
1	- Study of	-	Execution of	Illustrate the	- Develop	Develop execution
	simple C	Compilati	simple C	execution of basic	- Turbo C compiler	of C code using
	program	on	Code	C programs	- C code	Turbo C compiler
		-				
		execution				
		_				
		debuaain				
		a				
2	Study of	9	Docision	Imploment the	Davalan	Dovelop a C code
2						
	aritnmetic	Condition	making	alfferent arithmetic	- Conditional	using conditional

	operators, quadratic equation	al statement s	statements	operators in C, quadratic equation using decision making statements	branching - C code	branching statements
3	-Study of Palindrome	- Repetition statement s	Looping statements	Illustrate positive integers to check palindrome using looping statements	-Develop - Looping statements - C code	Develop a C code using Looping statements
4	-Study of Binary Search Bubble sort, Matrix multiplicatio n	-Arrays	Linear representatio n	Demonstrate 1-D,2- D in binary searching technique,bubble sort,matrix multiplication	- Develop - Arrays - C code	Develop a C code using Arrays
5	-Study of prime number, Taylor series, square root of number	-User Defined functions -	Modular representatio n	Implementing functions to check prime or not, Taylor series, square root of number	- Develop - User defined functions - C code	Develop a C code using user defined functions.
6	-Study of compare, concatenate , length	-String Manipulati on functions	String operations	Demonstrate different types of string operations	- Develop - String manipulation functions - C code	Develop a C code using String manipulation functions parameters
7	-Study of read, write, compute average marks of student	- Structures -	Derived datatype	Implement structures ir student database	- Develop - Structures - C code	Develop a C code using structures
8	-Study of sum, mean, standard deviation	-Pointers	Address of memory location	Implement pointers in sum, mean and deviation	- Develop - pointers - C code	Develop a C code using pointers
9	-Study of binary to decimal conversion	- Recursion	Self- invoking functions	Implement recursion for binary to Decimal conversion	- Develop - Recursive function - C code	Develop a C code using recursion